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ABSTRACT

A new receiver algorithm for M-ary Phase-Shift-Keyed

modulation is proposed which provides for direct bit detec-

tion (DBD) instead of the traditional approach of symbol

detection followed by bit regeneration. DBD eliminates the

intermediate step of symbol detection and bit regeneration,

reduces the amount of computation, allows for binary rather

than M-ary decisions; and permits parallel regeneration of

bits. All these factors provide an attractive scheme for

high speed digital implementation. Receiver structures for

DBD of 8-PSK and 16-PSK signals are proposed and the

resulting bit error rates (BER) analyzed for transmission

over an additive white Gaussian noise channel. In both

cases, receiver structures are developed which provide no

loss in BER performance when compared to that of conven-

tional phase detection receivers. The proposed receivers'

performance was analyzed alongside channel coding tech-

niques. Coding gains of 2. 5-5 dB at a BER of 10 were shown

to be feasible with simple block or convolutional codes.
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I. INTRODUCTION

Information sources can be classified into two catego-

ries based on the nature of their outputs, namely analog

information and discrete information sources. Analog infor-

mation sources such as a microphone actuated by speech, or a

TV camera scanning a scene, emit one or more continuous

amplitude signals. These analog information sources can be

transformed into discrete information sources through the

process of sampling and quantizing in order to allow trans-

mission through a digital communication channel. Discrete

information sources such as a teletype machine or a computer

producing an alphanumeric output generate a sequence of

discrete source symbols and therefore need no further digi-

tizing.

The discrete outputs of the information sources are

converted through a source encoder into a binary sequence of

O's and l's by assigning codewords to the symbols in its

input sequence. The modulator in the system then accepts

these bit streams as its input and converts the bits stream

into electrical waveforms suitable for transmission over the

communication channel. The modulator can assign waveforms to

a group of bits of arbitrary size. For example, in a 4-bit

group size, the modulator needs to assign sixteen distinct

waveforms to represent the sixteen different combinations of

4-binary bits and this is known as a 16-state modulation. In

general, non-binary modulation techniques are simply

referred to as M-ary modulation.

At present, binary and 4-ary modulation techniques are

the more common methods utilized and implemented. However,

with the crowded conditions prevailing in many regions of

the radio spectrum and the emphasis on modern digital satel-

lite transmission techniques, there is a need for achieving

10
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improved spectrum utilization. The higher order M-ary ( M=8

and above) modulation techniques which tend to be spectrally

more efficient than the binary or 4-ary modulations at the

expense of signal-to-noise ratio and are now employed more

frequently. With new developments in the more efficient

high-power microwave amplifier designs and advancements in

solid-state technology, it is probable that future genera-

tions of communication system will be able to operate at low

signal-to-noise ratios so as to enable the use of the more

spectrally efficient modulation techniques.

Since digital information transmission is based on

carriers modulated by the symbol waveforms, the symbol error

probabilities can often be computed directly. As a result,

the derivation of symbol error probabilities can be found in

many references (see [ Ref . 1: pp. 228-234, Ref. 2: pp.

204-207] for examples). However, from the viewpoint of a

binary digital communication system, the bit error rate is

often a better performance criteria and offers a more

uniform measure when comparing performances of systems with

different levels of modulation. As the bit error probabili-

ties for M-ary modulation systems are not found in refer-

ences, the first part of this thesis was devoted to

developing a general receiver structure for M-ary PSK modu-

lation and deriving a general relation between bit and

symbol error probabilities. Receivers for direct bit detec-

tion applicable to 8-ary and 16-ary PSK modulations were

proposed next, and the bit error " rate computed and compared

to that of a standard phase detection receiver assuming

signal reception over an additive white Gaussian noise

(AWGN) channel. It is shown that receiver employing direct

bit detection offers simpler hardware implementation and yet

provide bit error rate comparable to that of the standard

phase detection receiver.

11
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Digital channel coding is a practical method of real-

izing high transmission reliability by introducing some

form of error control on the transmitted information. In

applications where the received signal-to-noise ratio is low

such as encountered in satellite communication applications,

error correction coding is usually a necessity for satisfac-

tory system performance. Error correction is achieved by

channel coding operation in which extra bits are systemati-

cally added to the output of the source encoder. While these

extra bits by themselves convey no information, they make it

possible for the receiver to detect and/or correct some of

the errors present in the information bearing bits at the

receiver.

There are two principal methods of performing the

channel coding operation, namely block coding and convolu-

tional coding. Both methods require storage and processing

of binary data using a channel encoder and a channel

decoder. While this requirement was a limiting factor in the

early days of digital communications, it is no longer a

critical problem because of the availability of solid state

devices and memory at reasonable prices. The second part of

the thesis is devoted to analyzing some examples of block

and convolutional codes used in conjunction with the direct

bit detection methods discussed in the first part of the

thesis. These examples demonstrate that significant perform-

ance improvements (coding gains) in the order of 2 to 5 dB

can be achieved with relatively simple block and convolu-

tional codes.

12
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II. PHASE DETECTION RECEIVER FOR M-ARY PSK

A. SIGNAL REPRESENTATION AND RECEIVER STRUCTURE

For M-ary phase-shift-keyed modulation with equal signal

energies, a convenient representation of the signal set is

given by

s^t) = v^Eg/T cos(27if t + 2rc(i-l)/M), ( eqn 2.1)

i = 1,2,. . . ,M; < t < T

where f T equals some integer. A suitable orthonormal signal

set for the representation of M-ary PSK signals is given by

(p-^t) = V2/T cos27Cf t / (eqn 2.2)

<P2< t )
= V2/T sin27tfQ t , < t < T

Using trigonometric identity to expand s^(t) and

expressing in terms of <Pj(t) and ^(t), we have

s^t) = Ve^cos(2tt( i-l)/M) . <p 1
(t) (eqn 2.3)

- V/E
s
sin(7i(i-1)/M) . <p2 (t)

i = 1,2 M

A plot of the M-ary signal constellation can be made

using (p^(t) and (p2
(t) as axes for various values of M,

where the coordinates of the ith signal vector is given by

[ V^cos(27i( i-l)/M)
, VE~sin(27i( i-l)/M)]

The signal constellation for 4-ary PSK (better known as

QPSK) and 8-PSK are given in Figure 2. 1 for illustration

purposes.

13
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Figure 2. 1 Signal constellations for (a) QPSK modulation

(b) 8-PSK modulation

14
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Since a general M-ary PSK signal can be expressed in

terms of (p^(t) and <po(t) and the decision criteria for the

detection of the signal is based upon phase angle discrimi-

nation, a receiver using (p-^(t) and ^(t) as correlators

followed by integration, sampling and phase computation is

known to be optimum in minimum probability of error sense

assuming each signal is equally likely to be transmitted,

and the received signal is contaminated with additive white

Gaussian noise (AWGN). The corresponding receiver structure

is shown in Figure 2.2. The same receiver structure can also

be obtained following a strict mathematical analysis as done

in [Ref. 1: pp. 228-230].

Let the incoming signal over a T seconds interval be

represented as

y(t) = sk(t) + n(t), < t < T ( eqn 2.4)

where

sk(t) = V2E S/T cos(27lfQt + 27i(k-l)/M), (eqn 2.5)

k = 1,2,. . . ,M

The output from the correlator-integrator is given by

Y± = { y(t)(p
i
(t)dt, i = 1,2 (eqn 2.6)

'o

so that from eqn 2.4 and eqn 2.3, we have

i - \ tvE s/T cos(27if t + 27t(k-l)/M) (eqn 2.7)

+ n(t)](p
1
(t) dt

= VElcos(27t(k-l)/M) + N.,

s
— w V ~.v V ^ ,, w, „c

where

N

15

= ( n(t)(p
1(t)dt (eqn 2.8)
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so that N^ is a Gaussian random variable with zero mean and

variance NQ/2, which implies that Y-j_ is Gaussian random

variable with mean Ve^cos( 2k( k-1 )/M) and variance NQ/2

,

conditioned on s^(t) being transmitted. Similarly

Y2 = \ [V2E S
/T cos(27Tf t + 27r(k-l)/M) ( eqn 2.9)

+ n(t)](p2 (t) dt

,s «-.«v «.« N « -//"/ " S
= -VE^sin(27t(k-l)/M) + N«

where

Ns
= ( n ( t)(p2 ( t)dt (eqn 2. 10)

o

so that Ns has the same statistical properties as Nc
implying that Y

2
is also a Gaussian random variable with

mean -
>/E s

sin( 2rc( k-1 )/M) and variance NQ/2, conditioned on

s^(t) being transmitted. It can be shown that Y^ and Y2 are

uncorrelated random variables, and since they are Gaussian,

they are therefore statistically independent. Therefore

their joint probability density function (pdf) is given by

P(yi/Y2l sk( t )) = (eqn 2.11)

— exp I' - (1l~1£s cos ^)' - (&+&* *'

™> ' L jr 77—
_2_9<)

where 6^ = 2rc(k-l)/M. Transforming into polar coordinates

using Y-j_ = Rcosi] and Y
2

= -Rsint], the pdf becomes

p(R / Hlsk(t)) = (R/7iNQ )exp(-(R
2 -2RVe;cos( n-0k )+E s/No ) ,

0<R<co , -tt < r| < 7t

= , otherwise (eqn 2.12)

Integrating over R and writing r = R/VN^/ d = E
S
/NQ/ the

pdf of the phase angle r\ becomes

17
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p(T]|sk(t)) = (r/7i)exp(-( r2 - 2rv/d" cos( n-6k ) + d) ) dr,

-n < \\ < K ( eqn 2. 13)

= , elsewhere

The probability of correctly detecting the kth signal

denoted Pr (correct | s^( t) j is the probability that |Gk-i]| is

the minimum for all
1

_= — ri | , j = 1,2,... ,M or equivalently

since 9^ = 2rc( k-1 )/M, is the probability that r\ is in the

region [ (2k-3)7t/M , (2k-l)7C/M ], therefore

Pr(correct| sk ( t) }
•= \ p( f||sk(t)) d\\ (eqn 2.14)

\
where r| ^ = (2k-3)7t/M and r\

2
= ( 2k-l)7T/M. If we substitute \\i

= r\ - 27i(k-l)/M in the above equation, we see that

Pr (correct
I
sk ( t) ] = \ p(y) dvy ( e<3n 2.15)

in/*

which is independent of the index k. For equiprobable

signals, the probability of correct decisions, denoted PC (M)

becomes

PC (IYI) = Pr (correct | sk ( t) ] for any k (eqn 2.16)

= ( 2/7r)exp( -d) \ r exp(-rz ) \ exp(2rVd cosv}/) dvj/ dr
o '0

exp( -(u-Vd) 2
)

J
exp(-v2 ) dv du

where a change of variables using u = rcosvy, v = rsiny has

been used in order to obtain the last equality. In the case

of BPSK, namely M = 2, the probability of correct decision,

P
c ( 2 ) , becomes

P c ( 2 ) = ( 2/7T ) \ exp( -( u-Vd" )

2
) j

exp( -v2 ) dv du
o o

1 - Q ( V2d" ) (eqn 2. 17)

18
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where Q( . )is the complimentary error function defined by

oo

Q(x) = (1A/27C) \ exp(-zz/2) dz ( eqn 2.18)
'x

The symbol error probability denoted P£ ( 2 ) which is the same

as the bit error probability for M = 2, is given by

P-(2)= 1 - P r (2) = Q(V2d )
(eqn 2.19)

= Q(v/2Eb/NQ )

since Eb = E
s

for BPSK.

B. RELATIONS BETWEEN SYMBOL AND BIT ERROR PROBABILITIES

As presented in the previous section, symbol error prob-

abilities can be computed directly from knowledge of the

channel characteristics and the derivation can be found in

many references (see [ Ref . 1: p. 231] for example).

However, for transmission of binary data, and when comparing

system with different levels of modulation, the bit error

probability rather than the symbol error probability is of

interest as explained in the introductory chapter.

Unfortunately the computation of bit error probability is

often quite complicated for multi-level modulation system

and is often not carried or presented in most literature. In

[Ref. 1: p. 198], the bit error probability has been deter-

mined only for the case of orthogonal signal sets where the

result is

Pb(M) = 2n
~ 1

. P
s
(M)/(2 n -1) (eqn 2.20)

with M = number of distinct signal waveforms

P
S
(M) = Symbol error probability of the transmitted

signal

Pb(M) = Bit error probability of the decoded data bit

n = log2M

19
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While Eqn. 2. 20 shows the relationship between bit error

probability and the symbol error probability, it is not

applicable here because the M-ary PSK signal set is not

orthogonal. Therefore, the remaining of this section is

devoted to deriving the bit error probability for M-ary PSK

signals. Using the notations previously introduced, and

further defining pk as the probability of k bits in error in

a received n-bit data block where k = 1,2,... ,n, then

n

P
s<
M

) = I Pk < e<3n 2 - 21 )

since the events [k errors in a block of n bits} are

disjoint for k = l,2,...,n. The average number of bits in

error given that an n-bit symbol has been detected incor-

rectly is

( I kPk )/( S Pk ) (
ec*n 2 - 22 >

Therefore the probability that a data bit is in error given

that an n-bit symbol has been detected incorrectly denoted

by P(B|S), is given by

n

P(B|S) = (£ kpk )/(nP s
(M)) (eqn 2.23)

Using Bayes 1 rule, we can write bit error probability Pb (M)

as

Pb(M) = P(B|S).P
S
(M)/P(S|B) (eqn 2.24)

where P(S|B) is the probability of symbol error given that a

bit error has occurred. Clearly this probability equal to 1,

so that

n

Pb(M) = P(B|S).P S(M)
= £ kpk/n (eqn 2.25)

20
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The main problem in the computation of bit error probability

in the above equation is the determination of the Pj^'s which

is a non-trivial task for multi-level modulation signals.

C. DERIVATION OF BIT ERROR PROBABILITIES FOR M-ARY PSK
MODULATION

In general, the bit error probability depends on both

the symbol error probability and the way in which a block of

bits are grouped together to form the symbol waveforms prior

to modulation of the carrier. One popular way of generating

the symbols is the use of Gray code. Gray coding has the

desirable property in that a given incorrect decision made

on a symbol that is adjacent to the correct symbol is accom-

panied by one and only one bit error. This minimises the bit

error rate since the main contribution to errors in symbol

detection corresponds to incorrectly deciding in favor of

the symbol adjacent to the actual transmitted symbol.

Examples of Gray coding for some M-ary modulation are

shown in Figure 2.3 together with the bit error patterns

based on the all zero symbol as reference. It is interesting

to note that similar bit error patterns are obtained regard-

less of the codeword chosen as reference.

1. Bit error probability for OPSK

A simplified receiver structure for QPSK modulation

is possible with the additional advantage of direct bit

detection at no loss in performanse [ Ref . 2: pp. 120-124].

The receiver structure and the signal constellation with

Gray coding assignments are shown in Figure 2. 4.

From a close examination of the block diagram of the

receiver structure for QPSK as shown in Figure 2.4(a), it is

found that both the in-phase I channel producing the output

Y-j_ and decision a^ and the quadrature Q channel producing

the output Y2 and decision ^2 are each similar to a BPSK

demodulator. The I and Q channels provide direct detection

of the 2-bit symbols associated with the QPSK modulation.

21
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Furthermore, the symbol error rate performance of the two

orthogonal channels are the same. Therefore, the symbol

error probability of each channel is given by

Pel = PeQ = PeBPSK = Q(V2Eb/NQ ) ( eqn 2.26)

The bit error probability is obtained by observing that

p^ = Pr( 1 bit error
}

= Pr{ a^ and a
2
but not both are in error

}

= 2Q(V2Eb/NQ )[l.- Q(V2Eb/N )]

P2 = Pr{ 2 bit error }
= Pr{ a^ and a

2 in error
]

= [Q(V2Eb/NQ )]
2

so that the resulting bit error probability, Pb(4) is given

by

Pb(4) = 0.5Pl + p2 (eqn 2.27)

= Q(V2Eb/NQ )

It is interesting to note that the bit error prob-

ability for a Gray coded QPSK is identical to that of BPSK

where the same bit energy-to-noise ratio is maintained for

both systems. This is a special case whereby there is no

performance penalty in the bit error rate when a higher

order of modulation is used in place of a lower modulation,

namely QPSK in place of BPSK.

2. Bit error probability for 8-PSK signal

The bit error probability of the standard receiver

structure shown in Figure 2. 2 is now considered for the case

of 8-PSK signal with arbitrary phase angle separation as

shown in Figure 2. 5. Define

pn = Pr[ 1 bit error|si(t)
)

= Pr{s2(t)| Sl(t)j + Pr{s4(t)| Sl (t)}

+ Pris8(t) |s1(t)} (eqn 2.28)
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Figure 2. 5 Signal constellation and Gray code assignments

for arbitrary phase angle spacings 8-PSK signal
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Considering each term individually in the Eqn. 2.28, we have

Pr[ s
2
(t)| Sl (t) )

=

Pr {n, ^-Jb
/

(/E + n,)iz n % 4 % £ (jE+^fanff -f ) J

}M JTM L V ttfr / I jNc/2 / j
'

where n^ and n2 are the components of the additive white
o

Gaussian noise along the (p^(t) and (p2
(t) axis. Let x /2 =

2
N]_ /N this implies

Pr{ 2(t)|a1(t) )
=

ls J^ e
'X2

[
Q (

(nii' x)ian ^) - *(to***)*"(i-9))]j«

where d = E/NQ . Similarly, we can obtain

Pr{ s4(t)| Sl (t) )
=

|

U
~e'

X/2

l6t((J2J^x)in n f)^6i((^^x)^n(f-^))Jdx

Pr{ 8(t)|a1(t) )
=

-725

fj=e~*
V2

[Q(im**)-hnf)- Q((m + *)i*«($-b))l<ix

Combining all the three terms of the above expression for

the equation of p^ given in Eqn. 2. 28 and after some simpli-

cation, we obtain

p^ = Pr( 1 bit errorls-j^t)
}

~J2d
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Similarly.

p2 = Pr{ 2 bit error|s
1
(t)

}

= Pr{s3(t)|s 1(t)} + Pr(s 5 (t)| Sl (t)} + Pr{s7(t)|B 1(t)}

"i^
c ri1***^*'*)]**

+ I if '

lm e

~*'l*(-(
ja "') i"'k)-6(U3**)t*,f)lj:

j3

-JId

[i^4
n(^ x)^(t't))'^((^^MH))]d

+

_i ik
e
~" z

[^(-(^^) f^)'a(im,y)Hn^)}j
t

Finally,

p3 = Pr( 3 bit error|s
1
(t)

}

= Pr{ s5(t)| Sl(t) }

=
J jjg

e~*
:}

[*(W +*)**«%) - Q ((JB+*)+»ff-f))]jx
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Furthermore, it can be shown that the same expressions for

P^/ P2 ' P3 / are obtained when conditioned on the other

signal Sj_(t) being transmitted, i = 2,3,. ..,8 so that the

bit error probability Pk(8) becomes

Pb(8) =
p-l/3

+ 2p2/3 + p3
(eqn 2.29)

Bit error probabilities with different values of a

and P were computed with the aid of a computer. It can be

verified from the numerical results that the lowest bit

error rate occurs for the case of equal angle spacing, i. e.

,

a = 45°. The bit error probabilities for the cases a =

30°, 36°, 45°, 54°, 60° have been plotted as shown in Figure

2. 6.

3. Bit error probability for 16-PSK signal

The performance of the receiver shown in Figure 2.2

was analyzed for 16-PSK modulation having the signal

constellation shown in Figure 2. 7. Observe the use of equal

angle separation for the signal vectors with Gray bit codes

assigned to the signals.

Assuming that the transmitted signal is Si(t), then

p^ = Pr{ one bit errorls-^t)
)

= Pr{s2 (t)| Sl (t)} + Pr{s 4(t)| Sl (t)}

+ Pr(s8(t)| Sl (t)} + Pr{s 16(t)| Sl (t)j

00 -xV
' c

9

frR

- x/ r 1

+
[ jt e

'
%/2

I
Q ((/%+*)*«" IIK")- &((j2d+x)ion33.7S')l Jx
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Figure 2.7 Signal constellation for 16-PSK signal
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Similarly

P2 = Pr( 2 bit errorls^t)
)

= Pr{s3 (t)| Sl(t)j + Pr{s5(t)| Sl(t)} + Pr[B7(t)|a 1(t)J

+ Pr{s g (t)| Sl (t)} + Pr{s 13 (t)|s 1
(t)} + Pr[s 15 (t)| Sl (t)i

s 2
f jk e

'V?
U({Ja+*)-**n u.is*) - Q((ffi+x)i*nSL2s 6)h>

t 2 f^ e
'

2

[ Q ((J% + *)tanV.15°) ] J;

~J2S -x/ f

/ T!?
6" 2 [^((^^)^n(-n.iS^--Q((J22^)hxnlL25 <,)l cl )

Also

p3 = Pr{ 3 bit error|s
1
(t) ]

= Pr{s
6(t)| Sl (t)} + Pr{s10(t)| Sl(t)j

= Pr{s 12 (t)| Sl (t)) + Pr{s 14(t)| Sl (t)

2

-I/OL J™
e

'J Q((& + *fan5 t- 2s ') -&((&+*)+*» W-15')]d

~m
,

-x
3

/2 r .

J

.00
j

-*/? \(
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and finally

P4 = Pr{ 4 bit error|S]_(t)

= Pr{ s11(t)|s1(t) }

It can be shown that the same expressions for p-,,

P2 / P3 , and p^ are obtained conditioned on all other signal

s^(t) being transmitted, i = 2,... ,16. Thus, the bit error

probability becomes

Pb(16) = Pi/4 + p2/2 + 3p3/4 + p4 (eqn 2.30)

When the above integral expression for p-., p2 , P3

,

and p^ were evaluated numerically on a computer, it was

found that for d = E/NQ > 5 dB, the integrals whose limits

range from negative infinity to -V2d were so small that no

difference in the overall results were obtained by ignoring

their contribution even when using double precision computa-

tion on the IBM 3033 computer. The bit error probabilities

of 16-PSK were plotted in Figure 2. 8 along with those

obtained from equal angle spacing 8-PSK and QPSK. The curves

were plotted using bit energy-to-noise ratio on the hori-

zontal axis thereby providing a fair basis for comparing the

different levels of signal modulation. It can be observed

from the curves that bit error rate performance deteriorates

with higher order M-ary modulation which is an expected

result. At bit error rate of 10 or less, the performance

loss is about 3.5 dB between QPSK and 8-PSK and 4.5 dB

between 8-PSK and 16-PSK.
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Figure 2. 8 Bit error probabilities vs E^/Nq

for 16-PSK, 8-PSK and QPSK
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III. BIT DETECTION RECEIVERS FOR M-ARY PSK

In Chapter 2, it has been demonstrated that direct bit

detection can be achieved with QPSK signalling at no loss in

bit error rate performance. This approach of direct bit

detection will be extended to 8-PSK and 16-PSK modulation by

suggesting possible receiver structures and computing their

bit error probabilities. The results are then compared with

those obtained from the standard phase detection receivers.

A. DIRECT BIT DETECTION FOR 8-PSK

The signal constellation for 8-PSK modulation with Gray

bit coding assignment and the receiver structure for direct

bit detection were shown in Figure 3. 1. For the Gray bit

coding assignment, it can be seen that the detection of the

most significant bit (MSB) requires a decision as to whether

the received signal vector falls on the upper or lower half

of the signal space. The detection of the least significant

bit (LSB) requires a similar decisions as to whether the

signal vector is in the left half or right half of the

signal space. The detection of the middle bit is slightly

more complicated. The received signal component along the

(p^(t) axis is squared and compared to a threshold in order

to determine whether it is a logical O's or a logical l's.

From the signal space diagram, we see that for the two

signal vectors that lie in the same quadrant, the components

along the (p^ axis are given by ±VEcosa/2 or ±VEsina/2. It

would therefore be appropriate to choose the threshold at

0. 5[ Ecos2 (a/2) + Esin2 (a/2)] = E/2

Such a receiver structure provides a simplification in

hardware implementation over that of a standard phase

detector and was first proposed by Thompson [ Ref . 3].
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Thompson constructed the receiver structure of Figure 3.1(b)

and carried out an experimental evaluation of the system's

bit error rate performance at two angle settings, namely a =

36.8° and a = 45° (equal angle spacing). The experimental

results demonstrated that the phase angle setting at a =

36. 8° gave a better bit error rate performance than for

equal angle spacing. The experimental results were however

not supported by any analytical studies.

In the following, analytical results are presented in

order to evaluate the bit error rate at arbitrary phase

angle spacings between signals for the receiver proposed by

Thompson. The optimum phase angle spacing was computed and

the bit error rate compared to that of a standard phase

detection receiver.

Define p = Pr{ MSB error } and n^ as the noise compo-

nent along the (p-^(t) axis. Using the symmetrical properties

of signal vectors about the (pWt) and <p9(t) axes, we need

only consider the two cases conditioned on s-^(t) and S2(t)

being transmitted. This together with the condition of equi-

probable signals allowed p to be written as

pem = 0. 5[ PrfMSB error| S]_(t)}

+ PrfMSB error |

s

2 ( t) } ]

- bo " — <»

= i*lfi[*t) + i Q l%

( eqn 3.1)

Similarly, it can" be shown that with pel = Pr[LSB error},

Pel =
Pern' For t^le detection of the middle bit, we proceed

with the following analysis
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where s^ is the component of signal sWt) along the <p^

axis. Define z = y^ , so that

f^M- gferhi- "-'%™>
)

+ ex
(Zi-2SilJT + S

il

i

)

f (- (SlI^i -">
| / / * >

- j otherwise

Define pe ^ = Pr (middle bit error}. It can be shown that like

the case of pem / we need only consider the two cases condi-

tioned on s^(t) and S2(t) being transmitted so that

pei = 0. 5[ Pr (middle bit error|s
1
(t)}

+ Pr(middle bit error|s2(t)) ]

= 0. 5[ ( p(z|s
1
(t))dz + I p( z| s

2 ( t) )dz] ( eqn 3.2)

Analyzing each term separately, we have

{ fi'M)'* - lvkf exf('

+
Cvkf * (

N*
c/i

L (2t2SllJFtS„
3

)

N t

M
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where the substitution x = s/z has been made. Normalising

the integrand to a normal Gaussian distribution with zero

mean and unit variance, we obtain

s«/to"
^r e ^

- a / /# +
E ^'i

«o M7z

Furthermore

£ •??!= Qlli-W,'

so that

P.
J-
2

+ yf *?
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We obtain finally the bit error probability P]
D(8) from

Pb(8) = 2pem/3 + pei/3 (eqn 3.3)

The bit error probability (P^(E)) versus bit energy-to-

noise ratio (E^/Nq) has been plotted over the range of a

between 28° and 40° running in 2° step increments and the

results shown in Figure 3. 2. An interesting result to note

is that the bit error rate is not optimum at equal phase

angle spacing. Using- a computer search algorithm, it was

found that the phase angle spacing for optimum performance

varies over a small range of values depending on the size of

the bit energy-to-noise ratio. The optimum phase angle

versus the desired bit error rate ( and its corresponding

E^/Nq) were tabulated in Table 1. It can be seen from the

values tabulated that for lower E^/Nq (i.e., values smaller

than 13.2 dB), the optimum phase angle a equals 36°. At

higher E^/N-, the optimum phase angle a decreases and equal

32° for Pj
D
(E) < 10" ' which represents a nominal design

figure for most applications.

TABLE 1

OPTIMUM ANGLE SPACING VERSUS DESIRED BIT ERROR RATE

P
t
,(E) Eb /No (dB) Optimum a

5. 10"•3 - 6. 10
-4

10. 7 - 13. 2 36°

6. 10"4 - 2. 10
-5

13. 2 - 15. 7 34°

< 2. 10" 5 > 15. 7 32°
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Choosing an angle a = 32°, the bit error rate is

computed and plotted alongside the bit error probability

derived in Eqn. 2. 29 for a standard phase detection receiver

as described in Chapter 2. The results are shown in Figure

3.3. At a desired Pj
D
(E) of 10"

, the bit detection receiver

is seen to be 3 dB worse in bit energy-to-noise ratio

compared with the standard phase detection receiver. The 3

dB represents a significant loss in performance. Moreover,

the receiver requires a threshold setting of E/2 for the

middle "bit which is signal energy dependent and requires an

automatic gain contro-1 (AGC) circuit for system adaptation

so that a search for a better receiver is justified.

An alternate receiver structure is described in the

following section whereby the same theoretical bit error

rate of the standard phase receiver can be achieved with

direct bit detection and at the same time allowing for a

simplification in implementation in that only zero value

thresholds are required so that there is no need for a AGC

circuit.

B. MODIFIED BIT DETECTION RECEIVER FOR 8-PSK

The receiver structure presented in the previous section

was modified slightly to obtain an improvement in bit error

rate performance. The modified receiver structure is shown

in Figure 3. 4 whereby the modification involved only a

change in the detection method of the middle bit. The middle

bit is obtained by evaluating ( Y^ - Yo anc* comPar i n<3 this

value to a zero threshold. This method is preferable also

from the point of view that the receiver uses the thresholds

that are signal energy independent. This is important

because it eliminates the need for system adaptation and the

use of automatic gain devices.
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The error probability associated with middle bit is now
2determined by first obtaining the conditional pdf of ( Y^ -

Yo ) = cos2t|. Conditioned on s^(t) transmitted, correct

decoding of the middle bit occurs when the received signal

has positive values for cos2r|. This implies a zero value

threshold for the middle bit instead of E/2. Since -k < r\ <

n,

Pr (middle bit correct | s^( t) transmitted} = Pr(cos2ri > 0}

= Pr{-7T/4 < n ^ n/4) + Prf-rc < v\ < -3rc/4}

+ Pr{ 371/4 < r\ < n} ( eqn 3.4)

Therefore the error probability for the middle bit can

be derived by computing the pdf of x\, the phase angle of

the received signal vector. The derivation of the pdf of r|

can be found in [ Ref . 4] where

ph|5,(*)) = j£ [n Ml cosq'.e
dca5yn

\Q(-fIcosq')l
;

- 77 ^ 1\ £ 77 (eqn 3. 5)

- ) 0+h€rcotSC

where n
1 = r\ - G

i

9^ = phase angle of signal vector s^

d = E S/NQ = 3Eb/NQ for 8-PSK.

Using the properties of rotational symmetry and equiprobable

signals,

Pr{ middle bit correct

|

Sj( t) transmitted
]

= Pr (middle bit correct] for any i (eqn 3.6)
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tt/* ?3ir/<+

= ) P(nis 1 (t))dn + \ p(nls 1 (t))dn

+ I P(nis 1 (t))dn

The above integrals can be evaluated numerically on a

computer. It was found that for E^/Nq > 5 dB, the contribu-

tion from the last two integrals is insignificant even when

using double precision computation. Therefore

Pr {middle bit error} = pe ^ ( eqn 3.7)
,tt/«*

= 1 ( P(nis 1 (t))dii

so that

Pb(8) = 2pem/3 + pei/3 (eqn 3.8)

For the modified receiver structure of Figure 3.4 , it

was found that the optimum performance occurred with equal

angle spacing between signals, ie a = 45° and that at this

optimum angle spacing, the bit error rate equals to those

obtained for a standard phase detection receiver. This is a

significant result in that similar performance can be

achieved using simpler hardware structure and at the same

time providing for direct and parallel bit decoding. This

provides a potential for high speed data rate applications.

C. DIRECT BIT DETECTION FOR 16-PSK

The results obtained for the modified bit detection

receiver when 8-PSK modulation is used, have provided moti-

vation for the proposal of a bit detection receiver for

16-PSK modulation. The receiver and the signal constella-

tion with bit code assignments are shown in Figure 3. 5.

Again only zero value thresholds and simple arithmetic oper-

ation like multiplication and subtraction are needed.
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Decisions for the first and last bits are based on the

components of the received vector along the (p-j_ and (p 2
axes,

i. e. , Yi and Y9 respectively. Decision for the second bit is

based on the value of ( Y^ - ^2 '
= cos2r

l
in comparison to

a zero threshold. The decision for the third bit can be

obtained by evaluating the value of cos4vi and compared

with a zero threshold. From the above description of the

detection mechanism, the bit error performance is next

derived. Define

pe 2 = Pr{lst bit error}

pe2 = Pr[2nd bit error}

p 3 = Pr{3rd bit error}

pe4 = Pr{4th bit error}

Using the properties of rotational symmetry of signal

vectors and equiprobable signals, pe ^ can be obtained by

considering only the four cases conditioned on s^t), S2(t),

S3(t), and s^(t) being transmitted, i.e.,

pel = 0. 25[ Prflst bit error|s
1
(t)} +

Prflst bit error|s2 (t)} + Pr{lst bit error|s
3
(t)}

+ Pr{error|s4(t) } ]

Following a similar analysis as was carried out in Eqn. 3.

1

for 8-PSK, it can be seen that

Pel = Pe4 ~ °' 25[ Q(V2E/NQ sina) + Q( V2E/NQcosa)

+ Q(V2E/NQ sinP) + Q( V^E/N^cosp) ]

For the 2nd bit, the decision is based on the parameter
2 2

( Yj - Y2 ) = cos2t] where r\ is the received signal vector's

phase angle. The pdf of r\ conditioned on s
i
(t) transmitted

is given by

p(l| J
.'"J = 7^ f

/+ tM cosq'.e'
1'"''1

'. Q(-/Tc»n')]j
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-T.M*W (eqn3.9)

= ', other wise

where n' = ^ ~ Q±

6^ = phase angle of signal s^(t)

d = E
S
/NQ = 4Eb/NQ for 16-PSK

Using the properties of rotational symmetry and equiprobable

signals, it can be seen that pe2 can be obtained by consid-

ering only the two -cases conditioned on s^(t) and S2(t)

transmitted. Therefore

Pr{2nd bit correct) = 0.5[Pr(2nd bit correct | s-^( t)
}

+ Pr(2nd bit correct |

s

2 ( t) } ]

P(nis 1(t))dn

+ I p(n|s2 (t))dn ] (eqn 3.10)

In Eqn. 3. 6, the insignificant contributions from the inte-

gration of p(nl s i(t)) and p(nl s2( t )) over t
~ K > -371/4] and

[ 3ti/4 , k] have been left out. For the decision on the third

bit, the value of cos4tj was computed and compared to a zero

value threshold. A bit value of l's is assigned if cos4r| >

and this happens when r\ falls in the following regions:

[-71,-771/8], [ -5tc/8,-3tc/8] ,

[ -71/8,71/8. ] , [ 3tc/8,5tc/8] , [ 771/8 ,ti]

Using the properties of rotational symmetry and equiprobable

signals again, we obtained

pe3 = 1 - Pr[-57t/8 < i||s
1
(t) < -37C/8} (eqn 3.11)

- Pr[-7t/8 < Ti|s 1
(t) < 71/8} - Pr[37t/8 < r\

| s1 ( t )<5tu/8
]
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whereby the insignificant contribution from the integration

of p(t]|s-|_(t)) over the range [-71,-771/8] and [7k/8,k] has

been left out. The bit error probability is then given by

Pb(16) = pel/2 + Pe3/4 +Pe4/4 (eqn 3.12)

Numerical evaluations of the bit error probabilities

were obtained with the aid of a computer. Again, it was

found that optimum performance occurred at equal phase angle

spacing between signals. The plot of bit error rate versus

bit energy-to-noise ratio is shown in Figure 3. 6 for the

case of equal angle spacing (a = 11.25°) and also for

unequal angle spacing where a = 10°. In the latter case, a

loss of 1 dB signal-to-noise at Pj
D
(E) = 10 was incurred.

The bit error rate for the case of equal angle spacing

between signals agrees with that derived for a 16-PSK modu-

lation standard phase detection receiver. This result

together with the result obtained for a 8-PSK modulation

suggest that for any M-ary PSK signal, it is likely that a

direct bit detection receiver will always exist, having a

theoretical bit error rate performance that is similar to

that of a standard phase detection receiver. By carefully

structuring the receiver, we can obtain parallel decoding of

bits and also simplification in the hardware implementation.

This result is important considering the present trend of

using higher order modulation techniques due to the ever

increasing demand for higher data rates in all forms of

information transmission.
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Figure 3. 6 Performance of 16-PSK bit detection

receiver with equal and unequal angle spacing
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IV. FORWARD ERROR CORRECTION CODES

There are two different types of codes in common use

today, namely block codes, and convolutional codes. In block

coding, a sequence of bits is generated by a binary source

which are then grouped into blocks of k bits long. To each

of these k-bit blocks, (n-k) redundant symbols are are added

to produce an n-symbol codeword. The (n-k) redundant symbols

are referred to as the parity symbols. The result is denoted

as an (n,k) block code. Since each codeword contains n

symbols and conveys k bits of information, the information

rate of the encoder output is k/n bits per symbol. This

ratio k/n is also referred to as the code rate.

The encoder for a convolutional code also accepts k-bit

blocks of information, and produces an encoded sequence of

n-bit codewords. However, each codeword depends not only on

the corresponding k-bit message block at the same time unit,

but also on m previous message blocks. Hence, the encoder

has a memory of order m. The set of encoded sequence

produced by a k-input, n-output encoder of memory order m is

called an (n,k,m) convolutional code. The ratio R = k/n is

also the code rate as before. Since the encoder has memory,

it must be implemented with sequential logic circuit.

A. SINGLE ERROR CORRECTING HAMMING BLOCK CODE

The single error correcting Hamming code form a class of

block code which is known as perfect code in that all single

errors and no other are correctable. For any positive

integer m > 3, there exists a Hamming code with the

following parameters:

Code length : n = 2m -1

Number of information symbols: k = 2m - m - 1

Number of parity-check symbols: (n-k) = m
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Error correcting capability: t = 1( i. e. single error

correction)

From the development of [ Ref . 5 : pp. 79-81], the unde-

tected codeword error probability of an (n,k) Hamming code

is given by

PU(E) = 2-m [l+(2m-l)(l-2p)
2m

~} - (1-p) 2 " 1 (eqn 4.1)

where m = n-k and p is the transitional probability of the

binary symmetric channel (BSC) with additive white Gaussian

noise interference.

For a (7,4) Hamming code, m = 3 so that

PU(E) = 0.125(1 + 7(l-2p) 4
}

- (1-p) 7 (eqn 4.2)

Comparisons of coded and uncoded bit error rate perform-

ance must be done on an equitable basis. One way to do this

is to require an equal transmitted message rate for both the

coded and uncoded systems. For an encoded n- symbol code-

word, the symbol energy is reduced somewhat because of the

shorter bit duration when compared to the bit duration of

the uncoded message sequence. Consider a k-bit message block

encoded into an n-bit symbol block for transmission. The

average symbol energy in the encoded sequence is reduced to

V = kEb/n

where E^ is the bit energy of the original uncoded message

sequence.

1. Codeword error and bit error probabilities

The exact relationship between the codeword error

probability of the transmitted sequence and the bit error

probability of the message sequence is generally complicated

and depends on the method used to generate the n- symbol from
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the k-bit. Most references (see [ Ref . 6] for example)

compute upper and lower bounds or derive approximations to

decoded bit error rate relationships based on high signal-

to-noise assumptions. For an (n,k) code, if T denotes the

average number of message bits in error for each codeword

error, the bit error probability is given by

Pb(E) = TPu(E)/k (eqn 4.3)

which is simply the ratio of the number of message bits in

error to the total number of symbols in the codeword. The

worst case occurs when each undetected codeword error

results in k message bit error. This yield the simple upper

bound

Pb(E) < PU(E) (eqn 4.4)

The lower bound is obtained by considering the most favor-

able situation in which each undetected codeword error

results in only one message bit error. For this case, T =

1, and

Pb(E) > Pu(E)/k (eqn 4.5)

For a perfect code with t-bit error correcting capability

and if the signal-to-noise ratio is sufficiently high, the

undetected error is most likely due to (t+1) bit errors in

the codeword. Of these (t+1) bit errors in the codeword,

(t+l)k/n are, on the average, message bit errors. Thus

r = ( t+l)k/n (eqn 4. 6)

and the approximation

Pb(E) = (t+l)Pu(E)/n (eqn 4.7)

result. The exact value of Pb(E) for the (7,4) Hamming code

will be derived next and compared with this approximation.
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2. Bit error probability for (7,4) Hamming code

A (7,4) Hamming code can be generated using the

generator polynomial g(X) = 1+X+X The message blocks and

the corresponding codewords are shown in Table 2 below.

TABLE 2

A (7,4) HAMMING CODE GENERATED BY G(X) = 1+X+X3

Messaqe Codeword

0000 0000 000

1000 1101 000

0100 0110 100

1100 1011 100

0010 1110 010

1010 0011 010

0110 1000 110

1110 0101 110

, 0001 1010 001

1001 0111 001

0101 1100 101

1101 0001 101

0011 0100 011

1011 1001 011

0111 0010 111

1111 1111 111

The standard array is next constructed and shown in

Table 3. The seven correctable single error patterns and

the all zero pattern are used to form the first elements in

each column and the sixteen valid codewords are used to form

the first elements in each row of the standard array.
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The remaining elements in the array are generated as

follows: let D.: denotes the jth column of the standard

array. Then

D
j

=
*
vj' e2 +v j' e

3 +vj' ••" e8+vj^

where v^ is a valid codeword and e^/^,... # eg are the single

error patterns known also as the coset leaders. Using these

rules, the columns in the standard array of the (7,4)

Hamming code are constructed and the array shown in Table 3.

Suppose the codeword "v^ is transmitted over a noisy channel.

We see that the received codeword r is in D^ if the error

pattern caused by the channel is a coset leader and hence

will be decoded correctly into the codeword v^.

Since the coset leaders are single error symbol

patterns, undetected errors occur only when there are two or

more symbol errors in the received symbol pattern. It can be

shown that if the transitional probability p of the binary

symmetric channel is in the order of 10 or less, the only

significant contribution to the undetected error probability

comes from the 2- symbol error patterns in the codeword.

Based on this, an algorithm is devised in order to compute

the average bit errors in the message block given that a

2-symbol error have occurred in the received codeword. The

is done as follows: conditioned on each of the sixteen

possible codewords, all 2-symbol error patterns are

computed. These erroneous code patterns are then 'corrected'

using the standard array into its corresponding coset

leaders and then decoded into the corresponding message

blocks. From this the average message bit error probability

can be computed. This procedure is best illustrated with an

example. Conditioned on the all zero codeword transmitted,

the possible 2-symbol error codewords, the 'corrected' code-

words of the coset leaders and the message blocks are
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computed and is shown in Table 4. Of the 21 possibilities

of double symbol errors in the received codeword, nine of

them yield single bit errors while another nine result in

2-bit errors. The remaining three possibilities produce

3-bit errors in the message blocks.

The same computation of the bit error patterns were

carried out for each of the other 15 codewords assumed to be

transmitted. Similar results to those obtained for the case

in which the all zero codeword was assumed transmitted were

observed due to a property that Hamming codes possess that

puts them in the class of so-called perfect codes. It is

possible to conclude now that r, the average number of

message bit error given that an undetected codeword error

has occurred is given by

[(9x1) + (9x2) + (3x3)]/21 = 12/7

Therefore, the bit error rate in the message block for a

(7,4) Hamming code is approximately given by

Pb(E) = TPu(E)/k = 3Pu(E)/7 (eqn 4.8)

= 3[l+7(l-2p) 4 ]/56 - 3(l-p) 7/7

Comparing this result with Eqn. 4.7 which states that P^tE)

= 2Pu(E)/7, it can be seen that the approximation is off by

a factor of 2/3 which is reasonably good for the simple

estimate developed.

B. SINGLE ERROR CORRECTING AND DOUBLE ERROR DETECTING
HAMMING CODE

The Hamming code is also a cyclic code in that every

cyclic shift of any code vector results in another valid

code vector. The cyclic Hamming code can be modified so as

to be able to correct any single error and simultaneously

detect any combination of double errors.
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TABLE 4

COMPUTATION OF AVERAGE BIT ERROR IN MESSAGE BLOCK
FOR A (7,4) HAMMING CODE

** Conditioned on codeword 0000000 transmitted

2-bit error Coset Message # of

codeword leader block bit error

0101000

1001000 1101000 1000 1

1100000

0010100

0100100 0110100 0100 1

0110000

0001010

0010010 0011010 1010 2

0011000

0000110

1000010 1000110 0101 2

1000100

0010001

1000001 1010001 0001 1

1010000

0000101

0001001 0001101 1101 3

0001100

0100001

0000011 0100011 0011 2

0100010
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In application where retransmissions are allowed and easily

accomplished, this is definitely an added advantage. A

single-error-correcting and double-error-detecting Hamming

code of length 2m-l is generated by the polynomial

g(X) = (X+l)p(X) (eqn 4.9)

where p(X) is the primitive polynomial of degree m used to

generate the single-error-correcting Hamming code. Note that

this code has (m+1) parity check bits and is denoted as a

(n,k-l) code.

Let C-i and C2 represent the single-error-correcting

Hamming code and its corresponding modified code providing

double-error-detection respectively. It can be shown [ Ref

.

5: pp. 113-114] that the minimum distance of code C? is 4.

Also this distance 4 Hamming code C2 consists of all the

even weight code vectors of the corresponding distance 3

code C-^/ and the undetected error probability of this code

when transmission takes place over a BSC is given by [Ref 5:

pp. 115-116]

,

m-l m

PU(E) = 2~( m+1 ){l+2(2m-l)( l-p)( l-2p) 2 " 1
+( l-2p) 2_1 ]

-( 1-p) 2 " 1 (eqn 4. 10)

where p is the transitional probability over the BSC

channel.

For the (7,3) Hamming code C2 the general formula above

becomes (m = 3)

PU(E) = 2- 4 {l+14(l-p)(l-2p) 3 + (l-2p) 7
}

(eqn 4.11)

- (1-P)
7

Following the same type of analysis as carried out in the

previous section in order to compute the average message bit

63



www.manaraa.com

error probability, a search for all possible 3-symbol errors

in the received codeword is performed. The same standard

array presented for the (7,4) Hamming code and shown in

Table 3 can be used to correct the 3-symbol error codewords.

Note that all the 3-symbol error patterns are always 'cor-

rected' as a valid codeword (i.e. one with even weight).

This is illustrated in Table 5 which shows all the possible

3-symbol error patterns and the corresponding coset leaders

based on the assumption that the all zero codeword has been

transmitted.

Since there are eight valid codewords in C^ , each code-

word is assigned to a 3-bit message block. It can be seen

from Table 5 that when a 3-bit error occurs, it is equally

likely that any one of the seven remaining codewords is

assigned. Hence there is no prefered way of assigning the

message bits to the codeword so as to reduce the average bit

error rate in the message block. The same results were

obtained when the computation was carried out under the

assumption of other codewords being transmitted. Therefore

the average number of message bits in error given an unde-

tected error has occurred is given by

T = [(3x1 + (3x2) + (lx3)]/7 = 12/7

which is identical to the previous result. The message bit

error rate then becomes

Pb(E) = TPu(E)/k = 4Pu(E)/7 (eqn4. 12)

= [l+14(l-p)(l-2p) 3 +(l-2p) 7
i/28 - 4(l-p) 7/7

The two different forms of the Hamming code are now

applied to digital transmission via an optimum 16-PSK modu-

lation channel in order to illustrate possible coding gains.
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TABLE 5

COMPUTATION OF
FOR A (7,3) DOUBLE

AVERAGE MESSAGE BIT ERROR
-ERROR-DETECTING HAMMING CODE

** Conditioned on the codeword 0000000 transmitted

3-bit error patterns coset leader

0011100
1001100
1010100
1011000

1011100

0110010
1010010
1100010
1110000

1110010

0001110
0100110
0101010
0101100

0101110

0011001
0101001
0110001
0111000

- 0111001

0100101
1000101
1100001
1100100

1100101

0001011
1000011
1001001
1001010

1001011

0000111
0010011
0010101
0010110

0010111

The comparisons between the coded and uncoded case were made

assuming equal transmitted information rate so that the
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symbol energy-to-noise ratio for the coded case is reduced

by a factor of k/n. The performance associated with 8-PSK

modulation was included for comparison purposes. Figure 4. 1

shows the four curves of the bit error probabilities as

follows:

(a) 16-PSK receiver without coding

(b) 16-PSK with (7,4) Hamming code

(c) 16-PSK with (7,3) single-error-correcting and double-
error-detecting Hamming code

(d) 8-PSK receiver without coding

Figure 4. 1 illustrates the superiority of channel coding

especially when operating under weak signal-to-noise condi-

tions. For example, if there is a constraint on E^/N- to be

equal to or less than 9 dB, the results yield the following

bit error rates (BER):

16-PSK without code :

16-PSK with (7,4) code:

16-PSK with (7,3) code:

8-PSK without code :

BER = 3x10 -2

BER = 5xl0" 4 (decoded)

BER = lxlCT 4 (decoded)

BER = 3x10 -3

The reduction in BER is in the order of a factor of 10 with

coding whereas the BER reduction obtained from reducing the

order of modulation to 8-PSK is only in the order of a

factor of 10. For high signal-to-noise ratio, the perform-

ance gain associated with 8-PSK is only 1 dB better than

that of the coded 16-PSK. The above comparisons take into

account the reduction in E^/Nq inherent with coding so that

equal information transmission rates in all cases are main-

tained without having to increase the transmitted power.
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Figure 4. 1 Bit error rate comparisons of

16-PSK with and without Hamming code

67



www.manaraa.com

Another point worth noting is that for the (7,3) Hamming

code, the performance is not significantly better than the

(7,4) code even though the detected but non-correctable

errors have not been included in the bit error calculation.

Since the most likely errors in a typical communication

system is due to single errors if Gray coding is used, the

performance improvement from the use of double-error-

detection codes is sometimes not significant. Furthermore,

the need to implement a repeat request strategy makes the

(7,3) Hamming code less popular than the (7,4) Hamming code.

At a BER = 10 , the Coding gain from the (7,4) Hamming code

is about 4. 5 dB which is also the crossover point beyond

which the uncoded 8-PSK system yields superior performance.

C. CONVOLUTIONAL CODES

It is expected that convolutional codes will predominate

in their application to space and satellite communication

systems because such codes are relatively easy to implement

and several attractive decoding schemes for high speed

decoding exist and are available as "of the shelf" systems.

The classic Viterbi decoding algorithm is an excellent

example where the decoder implementation can be accomplished

using sequential circuits that require only add, compare and

select operations. In practice, at a bit error probability

of 10"
, a rate one-half code and a Viterbi decoder using

soft decisions can easily reduce the required signal energy

per bit by about 5 dB at the cost of bandwidth expansions of

a factor of two as were be shown in the subsequent sections.

1. Convolutional encoders

A very important parameter in the design of a convo-

lutional encoder which influences the performance of the

code is the constraint length, L, which is defined as the

number of encoder outputs that are affected by a single

input message bit. If the encoder contains k banks of shift
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registers, not all of which must be of the same length, then

the encoder memory order, m, is defined as the maximum

length of all the k banks of shift registers. The constraint

length is then defined as

L = n(m+l)

Another important parameter which affects the memory size of

the decoder is the total encoder memory, K, which is defined

as

k

where K^ is the length of the ith bank of shift registers.

To enable a fair comparison of the (7,4) Hamming

code analyzed in the previous section, convolutional codes

with total encoder memory, K = 4 were chosen in this section

for analysis and comparisons. The rate one-half and the rate

two-third codes were chosen as they possess code rates that

are close to that of the (7,4) Hamming code. Therefore a

(2,1,4) code and a (3,2,2) code were analyzed. The criteria

for choosing the encoder structure is one that maximizes the

free distance d£ree of the code. From [ Ref 5: p. 330] , the

best (2,1,4) code which gives the maximum d.p r is obtained

by utilizing the generating sequences

g(1 ) = (10011)
g< 2) = (11101)

which gives djrree = 7. The encoder implementation of this

code is shown in Figure 4. 2.
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Figure 4.

2

Encoder for (2,1,4) convolutional code

with dfree = 7
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The best (3,2,2) code is generated by the following

sequences

g-L*
1

) = ( 1 1 1 ) g2
< 1

) = ( 1 )

g x
(2) = ( 1 ) g2

< 2 ) = ( 1 1 )

g^
3

) = ( 1 ) g2
< 3 ) = ( 1 1 1 )

and the corresponding encoder implementation is shown in

Figure 4. 3.

2. Viterbi decoding

The main advantage of Viterbi decoding algorithm

lies with the relative ease of hardware implementation with

which simple operations like add, compare and select are

performed thus allowing for high speed digital implementa-

tion. This made it possible to operate at data rates in the

order of megabit per second. From the development given in

[ Ref 5, pp. 322-328], it is shown that the decoded bit error

rate using Viterbi decoding is given by

Pb(E) ~ (Bdfree/k)(2VpTl
rpT )

dfree (eqn 4.13)

where Bdfree is the number of paths with distance equal to

clfree in the encoder state diagram and p is the transitional

probability of the BSC. Since df of the chosen code is

known, the problem now involves determining Bdfre e*
This is

done by constructing a state diagram for the encoders as

shown in Figures 4. 4 and 4. 5.

For the (2,1,4) code, it can be seen that df = 7

occurs for only one sequence, SqS2S2S^SqSq so that B^£ree =

By = 1 and P]
D
(E) from Eqn. 4.13 becomes

Pb(E) ~ [2VP(1-P) ]

' (eqn 4. 14)
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3

Encoder for (3,2,2) convolutional code

with dfree = 5

72



www.manaraa.com

-

63

\ \
1 —

t

•H
a J .

jHr
\ »**—\?LA- •H

'^^Ir —^->L_ T

x"®c
eg

• \
s ^vjvL

*2^~ "" of

(X c^

®"

s\
E9
63
\ _--^^v[C*-~

63

S3

^—•""""""

—-v^Q

it

63 i
63 X s s>

s
NgC S

SI
-H -^of1

r
o

to\ •H^-^^
I

63

Q
-4

\

\
s ^*^2c

63

I

Of)^®- *—~vO

S ^-^viiCX-

(3

—

t

s

1

i

~H 1

63
\

63 >@c
-H r.

(O
63

®

\
s N2C

\
s

s

63

—V -H

(S3

63

—in*

a
ai

u
c
10

t->

in

x>

+j

in

ai
->

L
O
£1

CO"-*
—I "^@c •H m
\
63

\
s ^VP

Figure 4.4 Encoder state diagram for (2,1,4) code

73



www.manaraa.com

.

^
^
s ^<£)
—1
«H s

—(?)

^^ s
s

s

s

—Q) •H •

s -H s P
*

s oT
\
-i J

s
\ """©" 13 > of

3 i

**/
§

of

s ^un ,s s
5) —( od
s s
s —

1

\ S3
s / s »"^* —

©

Mjjy- V
\
s

("fjr
IS s

/
/
"m\

s

» l

of
I < IP

f it\

s —OS ,

§ ~^® rf>
"°

» -*
^ X© -H\

-Asr
s

5>^m

s
\

s
s

s
s
IS

s

s
IS

N «p

53 \

a
a
u
c
10

n

a
p
n

-t->

t_

a

5

Figure 4.5 Encoder state diagram for (3,2,2) code

74



www.manaraa.com

For the (3,2,2) code, it can be seen that dfree = 5

occurs for 2 paths: SqS-^s^Sq and SgSgS-^SQ so that

Pb(E)
~ [2VP(1-P) ]

5 (eqn 4.15)

In order to enable a fair comparison of the

different schemes considered based on equal transmitted

information rates, the values of E^/Nq were reduced by a

factor of 1/2 and 2/3 respectively for the encoded symbols

produced by the two "encoders. Figure 4. 6 shows the decoded

bit error rate plots of the convolutionally coded data

transmitted via 16-PSK modulation with Viterbi decoding

using hard decisions ( i. e. the output is quantized into only

2 levels). In order to improve the code performance, there

are two possible modifications, namely

(a) Increase K, the total encoder memory of the code

(b) Use soft decisions instead of hard decisions, i.e.
increase the number of quantization levels in the
output beyond two.

Heller and Jacobs [ Ref . 7] conducted extensive

computer simulation studies on the performance of codes with

different encoder memory size, K, and the number of output

quantization levels, Q. It was found that the coding gain

(improvement) obtained by increasing K from 4 to 5 was only

about 0. 5 dB. Furthermore, a decoder for a code of memory of

order K, requires storage (memory) that is proportional to

2 Therefore arbitrary increases in K without significant

performance improvements are not practical. [Ref 5: p. 337].

Ix. many cases, a value of K = 8 is considered the practical

limit for the Viterbi algorithm. On the other hand

increasing the output quantization levels from Q = 2 to Q =

8 requires a much smaller increase in memory size.
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(2,1.4)
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BIT ENERGY-TO-NOISE RRTIO
17 19

RB(DECIBEL

Figure 4. 6 Bit error rates of 16-PSK with

and without convolutional codes Q = 2

76



www.manaraa.com

The performance improvement however can be shown to provide

coding gains of about 1. 7-2 dB over the range of interest

for K = 4 and K = 5 codes. These improvements are illus-

trated in Figure 4. 7 which shows that the performance gains

of the two convolutional codes become comparable with that

of the Hamming codes considered in the previous section. A

theoretical proof [ Ref . 8] shows that the performance gain

from using infinitely fine quantization levels in soft deci-

sion decoding is 2 dB so that the use of Q = 8 yields

performance improvements that are very close to the theoret-

ical coding gain limit. With Q = 8 and at BER = 10"
, the

coding gain is about 4. 5 dB for both convolutional codes

considered.
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Figure 4. 7 Bit error rates of 16-PSK with

and without convolutional codes Q = 8
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V. CONCLUSIONS

In this thesis, a method to compute the exact bit error

rate (BER) for the reception of coherent M-ary PSK signals

with Gray code bit mapping and transmitted over an additive

white Gaussian noise (AWGN) channel is described.

Computation of bit error rates for QPSK, 8-PSK, and 16-PSK

modulations were made using the proposed method. The results

are summarized in Figure 2. 8 where it is shown that the bit

error rate performance deteriorates with higher order M-ary

modulations. At BER = 10" 5 or less, the performance loss in

signal-to-noise ratio ( SNR) is about 3.5 dB between QPSK and

8-PSK and about 4. 5 dB between 8-PSK and 16-PSK. Just prior

to finishing the writing of this thesis, a published paper

[ Ref . 9] describing a method for the computation of bit

error rates for M-ary PSK signal similar to what was

described in this thesis was discovered. While the work were

carried out completely independently, the numerical results

given in [Ref. 9] and those obtained in this thesis were

found to be in extremely close agreement.

Since digital communication techniques are being widely

used and higher data rates are constantly being demanded,

demodulators that can efficiently operate at high data rates

were investigated in the second part of this thesis. The

demodulator has to be adaptable to digital implementation in

order to take advantage of the VLSI technology, its struc-

ture has to be simple and it must allow for parallel bit

decoding in order to be able to operate at high data rates.

The demodulator must also provide good BER performance in

comparison to that of the conventional symbol ( followed by

bit regeneration) detector. Receiver structures for 8-PSK

and 16-PSK were proposed which have certain very desirable

features. They allow direct bit detection thus eliminating
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the intermediate step of symbol detection followed by

mapping the detected symbol into its representative bits.

They perform simple arithmetic operation like multiply and

subtract. Also binary decisions using zero valued thresholds

rather than M-ary decisions need to be implemented. All

these along with the parallel decoding of bits provide an

attractive scheme for digital implementation and allowing

the receiver to operate at high data rates.

The receiver structure for 8-PSK modulation proposed by

Thompson [ Ref . 3] was analyzed in order to determine its bit

error probability. I't was found that at BER = 10"
, the

performance of this detector was about 3. 6 dB inferior to

that obtained using a standard 8-PSK phase detection

receiver. Modification were made on the receiver structure

proposed by Thompson and also extended to the case of 16-PSK

modulation. The modified receivers have the desirable

features of requiring only zero valued thresholds which are

signal energy independent thus eliminating the need for

automatic gain control (AGC) circuitry. Most importantly

however, the theoretical BER performance of the modified

receivers is similar to that obtainable with standard phase

detection receivers. However, all the analytical results

were carried out on the assumption of the availability of a

phase and frequency coherent reference signal. This requires

the use an additional phase locked loop (PLL) circuit in

order to generate this coherent reference. In a standard

phase detection receiver, a differential phase encoding

technique is often used in order to allow for a possible

phase ambiguity in the coherent reference signal which

results in only a slight loss in performance. The differen-

tial encoding technique assumes that the unknown phase error

of the reference signal remains constant over two symbol

intervals so that it can be subtracted away. This method,

however, does not appear to be applicable to direct bit
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detection methods described in this thesis so that other

approaches must be used. A possible solution to this problem

involves allocating a portion of the total transmitted power

to a residual carrier in order to provide the phase informa-

tion at the receiver. Modified direct bit detection methods

that use table look-up techniques appear to be better solu-

tions to the problem as they are easier to implement and

make more efficient use of the transmitter power. At the

moment of writing this thesis, the differential encoding

method used in conjunction with direct bit detection remains

an unresolved issue and the author is unaware of any solu-

tion to this problem cited in the literature. The search for

a feasible differential encoding scheme that solves this

problem should be an interesting and worthwhile topic to be

pursued.

The third part of this thesis was devoted to analyzing

coding gains obtainable with the use of forward error

correction techniques used in conjunction with the modula-

tion techniques described earlier. The methodology developed

for obtaining BER's (rather than symbol error rates) was

used in order to determine decoded BER's and true coding

gains. For the higher order M-ary PSK modulated signals

(M>8) , the signal-to-noise ratio tends to be low so that it

is often desirable to improve the BER performance using

channel coding. The performance of some simple block and

convolutional codes applied to transmission via 16-PSK modu-

lated signals were analyzed and compared along with the

uncoded case. Comparisons were also made with transmission

using an uncoded 8-PSK modulated signals. It was found that

at Eb/NQ = 9 dB, the reduction in BER is- in the order 102

for coded transmission using a (7,4) Hamming code versus

uncoded transmission using 16-PSK modulated signals. The BER

reduction obtained from using uncoded 8-PSK modulation

versus uncoded 16-PSK modulation was only in the order of
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10. This illustrates the superiority of channel coding when

operating under weak signal-to-noise conditions. At a BER =

10" ' the coding gain from using the (7,4) Hamming code on

16-PSK modulation is about 4. 5 dB. The same coding gain at

BER = 10" 5 can be obtained by using a (3,2,2) or a (2,1,4)

convolutional code with Viterbi decoding and soft decisions

using 8 levels of output quantization, i.e. Q = 8. At low

signal-to-noise ratio, the (7,4) Hamming code is capable of

achieving higher coding gains than comparable convolutional

codes. This advantage is however offset by the fact that

block coding schemes are usually more difficult to implement

in hardware and may require look-up tables or complicated

decoders to perform their error correcting tasks.

Convolutional codes are often easier to implement requiring

simple operations like add, compare, and select, which mades

them particularly suitable for high speed digital implemen-

tation.
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